

1 – INTRODUCTION

The Additive FS 100X diluted in Solvent FS is a solution that, combined to the Buffer TAS, enhances the ApoH protein attachment to **viruses**. The ApoH protein, also known as Apolipoprotein H or Beta-2 glycoprotein 1, is able to bind various micro-organisms, including **viruses** (1-2), **fungi** (3) and **bacteria** (4-6). This **multiplex affinity capture** method proves to be simple, soft and fast enough so that the micro-organisms retain their viability and infectivity. The captured micro-organisms **are concentrated and separated from potential inhibitors** and so become easier to identify/detect with increased sensitivity (7-10).

The Additive and Solvent FS 100X are also recommended for the use of the synthetic Peps6 molecule derived from the ApoH protein.

2 – REAGENTS

REF TP10007 – Additive FS 100X

Additive FS is supplied as a light-sensitive powder to be diluted with Solvent FS 100X. Dilute before use.

REF TP10008 – Solvent FS 100X

Solvent FS is an aqueous solution for the resuspension of Additive FS concentrated 100X. Do not dilute before adding to Additive FS.

3 – STORAGE

- Store at 2-8°C upon reception.

- All unopened reagents remain stable at 2-8°C until the expiration date.

- After use, discard the remaining Solvent FS.

- Opened Additive FS, in **solid form**, is stable at 2-8°C until the expiration date. After resuspension in Solvent FS, it is light-sensitive and heat-sensitive. Therefore, the **liquid form** of Additive FS must be stored away from light at -20°C, where it remains stable until the expiration date.

4 – SAFETY AND PRECAUTIONS

- For better stability, all reagents must be handled with care to **avoid any contaminations**.

- The need for a **sterile work area** will be determined by the type of micro-organism and its use once captured (mandatory for culture).

- Reagents and specimens should be handled in accordance to good laboratory practices. Dispose of unused reagents, samples and wastes in accordance with local regulations.

- Do not use out-of-date reagents.

Increasing sensitivity, improving diagnostics www.apohtech.com

S.A. of 729 885 € capital

94, Allée des Fauvettes, 34280 La Grande Motte, FRANCE Email: info@apohtech.com – Phone: +33 (0)4 11 75 94 85 Mobile: +33 (0)6 50 60 33 17 – Fax: +33 (0)4 11 75 95 46 R.C.S. Montpellier/SIRET: 429 750 839/00038 – APE: 7219Z VAT: FR18429750839

5 – INSTRUCTIONS FOR USE

First use: dilute Additive FS

Add Solvent FS 100X into the Additive FS 100X, the required volume is noted on the label. Vortex for 1 full minute, both upright and upside down. Leave the tube at room temperature for 10 minutes and vortex again for 1 full minute.

The Additive FS is now in liquid form, still at 100X concentration. It should be aliquoted in several tubes for future use.

For use with ApoH or Peps6 magnetic beads

- Dispense sample in a capture tube. Measure volume.
- Add 4 volumes of TAS 1X or other capture buffer.
- Add 0.05 volumes Additive FS 100X (optional).
- Vortex sample diluted in capture buffer.
- Follow instructions for adding and processing beads.

Example:

1 mL sample + 4 mL TAS 1X + 50 μ L FS 100X + 10 μ L ApoH beads

11 – TROUBLESHOOTING

Some guidelines are given below. Please contact our technical support for any remaining questions, for further information or for protocols tailored to your specific application: <u>info@apohtech.com</u>

- According to the micro-organism or the sample, the Additive FS may be used in combination with other capture buffers than the Buffer TAS.

- All FS diluted samples should be rapidly put in contact with the ApoH protein or Peps6 molecule.

- Do not use Additive FS for viral capture if cell infection is planned.

- Do not use FS additive when isolating ISAV virus (Orthomyxoviridae).

- Add FS additive for other viruses or when sample also contains bacteria.

- Check that Additive FS is indeed **1X concentrated** when mixed in the sample.

- The liquid form of Additive FS (after resuspension in Solvent FS) is a clear liquid that will turn light yellow when improperly stored. Discard yellowish Additive FS which reduces capture efficiency and use a new Additive FS aliquot.

- Strictly follow the Additive FS guidelines for resuspension. Incorrect (short) resuspension will lead to sub-optimal results. Do not heat!

- Choose a test tube big enough to ensure correct agitation, for example: use a 1.5 mL tube for a 1 mL reaction.

12 - BIBLIOGRAPHY

- 1. Stefas E et al. Human plasmatic apolipoprotein H binds human immunodeficiency virus type 1 and type 2 proteins. AIDS Res Hum Retroviruses 1997, 13(1):97-104.
- 2. Stefas I et al. Hepatitis B virus Dane particles bind to human plasma apolipoprotein H. Hepatology 2001, 33(1):207-17
- Calvino JR et al. Use of magnetic nanoparticles for the specific separation and the molecular detection of micro-organisms on whole blood. ePoster for the 2015 ECCMID, Copenhagen, Denmark
- 4. Zhang L et al. Staphylococcus aureus expresses a cell surface protein that binds both IgG and beta2-glycoprotein I. Microbiology 1999, 145 (Pt1):177-83.
- 5. Agar C et al. β 2-glycoprotein I: a novel component of innate immunity. Blood 2011, 117(25):6939-47.
- Bouma B. et al. Adhesion mechanism of human b2-glycoprotein I to phospholipids based on its crystal structure, The EMBO Journal 1999, 18 (19): 5166-5174.
- 7. Veas F et al. Apolipoprotein H, an acute phase protein, a performing tool for ultra-Sensitive detection and isolation of microorganisms from different origins. Ch. 2 pages 21-42 in « Acute phase proteins as early non-specific biomarkers of Human and veterinary diseases » 408 pages. Edited by Francisco Veas, 2011. Publisher InTech, Vienna, Austria and Rijeka, Croatia.
- Adlhoch C et al. Highly sensitive detection of the group A Rotavirus using Apolipoprotein H-coated ELISA plates compared to quantitative real-time PCR. Virology Journal 2011, 8:63.
- 9. Stefas I et al. Interactions between Hepatitis C Virus and the Human Apolipoprotein H Acute Phase Protein: A Tool for a Sensitive Detection of the Virus. PlosOne 2015, Oct 26 (10):1-24.
- Vutukuru MR et al. A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment. J Microbiol Methods. 2016 Dec; 131:105-109. doi: 10.1016/j.mimet.2016.10.008. Epub 2016 Oct 17.